Dynamic routing Protocols:

Interior Gateway Protocols (used within an autonomous system):

- Distance Vector Routing Protocol:
 - Routing Information protocol (RIP):
 - Enhanced Interior gateway routing protocol (EIGRP)
- Link state routing protocol:
 - Open Shortest Path First (OSPF)

Exterior Gateway Protocols (used between two autonomous system)

• Border Gateway Protocol (BGP)

Link state routing protocol- Open shortest path first/intermediate system to intermediate system:

- Allows for routers to be grouped into areas for: scalability and to increase performance
- Updates are triggered when network topology changes
- Less bandwidth use because of no periodic update (think opposite of Distance vector where broadcasted periodically)
- Uses **cost** mainly + speed as **routing metric** to make decision on routing

OSPF Operation/Process:

- Router forms **neighbour adjacencies** with neighbouring routers
- Link state advertisements is flooded to neighbouring routers
- Link state database in router stores the information received from link state advertisements
- Use dijkstra's algorithm to determine best route
- Install best route in routing table

Neighbour adjacencies operation/Process:

- Routers with OSPF configured **send** hello packets on all interfaces involved in OSPF (think lab and how we set up router table with network [interface IP] involved with OSPF path)
- Routers that is running OSPF **receives** the hello packet on OSPF enabled interface will form neighbour adjacencies
- Therefore, routing updates will only be sent to links where neighbour adjacencies exist
- If router doesn't receive hello packet for some time then link is assumed failed and neighbour adjacencies formed will be broken

Trigger updates to notify other routers of changes

Link state advertisements:

• Contain info about subnet, router and other network information

Link state database:

- Contains a list of all LSA that the router received
- A representation of the network topology known by OSPF
- Used to calculate the best route to each destination using SPF algorithm
- Best route install in routing table
 - Show ospf route (Lab)

Network statements:

- Network [] 0.0.0.0 area
- Specify which interfaces which interfaces will be involved in routing process

ADD OSPS COST (MATHS)

OSPF Areas:

- Networks are broken down into areas which are semi-independent routing domains.
 - Each area maintains a link state database
 - The Link state advertisements are contained within their area to save bandwidth and make scalable
- The general structure of OSPF network is it contains-
 - Backbone area (Area 0) or transit area
 - Area border router: summarises the link state advertisements for both areas so that they are connected to and propagate these summaries to opposite area

Exterior gateway protocol- Border Gateway Protocol:

- Allows routing between autonomous systems and manage large number of routers
- Can be used internally (usually for large networks) and uses TCP
- A path vector protocol that has two message types announcement and withdrawals
- Uses policy based routing not metric (Think not interior gateway protocol)

*Policy based routing: (not a point)

- Allows border gateway protocol to manipulate path attributes such as: next hop, weight and local preference but these attributes are usually based on organisation polices and agreements
- Routers will exchange these attributes as part of BGP router updates

MIGHT NOT NEED TO KNOW EXAM

Peering: ******MIGHT NOT NEED TO KNOW except definition

- Exchange of traffic between two ISP without cost.
- Usually mutually beneficial for both providers or else use transit
- Connection between services providers occur at an internet exchange point

Transit: Pay another ISP to carry traffic to another network if peering doesn't work. (Think at the internet exchange point the exchange may be free: if there is mutually benefit between ISP or may cost money.) **

Internet exchange point:

- Connection point between two or more ISP facilitates peering to interconnect their technologies
- Usually house in data centres (colocation facilities)
- Can be non-profit government run

Point of Presence:

- Is a facility owned by telecommunication carrier and it is the point at which isp deploy equipment to connect customers to their network (think meet me room)
- Larger ISP often maintain large networks of point of presences

<u>https://www.youtube.com/watch?v=TKNQ1lgguM8</u> **watch internet exchange points General process Data broken down into packets \rightarrow they meet at internet exchange point = Transit or peering

Service provider's tiers:

- Tier 1: Internet backbone:
 - Usually large network providers own their or network that connect to other tier 1 providers
 - May or may not be retail providers
 - EG: AT&T and Telstra
- Tier 2: National providers:
 - \circ $\;$ Purchase capacity and routing services and bandwidth from tier 1 providers $\;$
 - **Peer** with other tier 2 providers (and some tier 1)

- Operate on national level with **point of presence**
- EG: Comcast, TPG??
- Tier 3: Local providers
 - Usually have no infrastructure of their own purchase capacity and routing services from higher tier providers
 - Operate in a small geographical region
 - EG: dodo, iinet (nbn resellers)

Contention distribution network:

- Geographically distributed networks of servers specifically designed to deliver content to end users. (Think network to deliver videos, files, audio)
- Each server in the network holds a copy of hosted content to ensure users are served by their nearest server in order to
 - Minimise delay to end users
 - Reduce transit cost (Above definition)
 - Reduce load on original content server (and to provide redundancy)

*Approaches of Content distribution network:

- Http Redirect Server:
 - \circ Users sends Get server request \rightarrow Main server redirects user browser to local cache server
 - o Advantages: Server selection is based on client IP
 - Disadvantages: Additional TCP handshake, and a lot of overhead because all devices will access it.

• DNS based server selection:

- o User requests cdn.site.com
- Dns request will reach authoritative DNS server of CDN provider
- o Authoritative DNS server will reply with IP of CDN cache server closest to user
- Advantage: No added overhead, response cached after request (so no need to calculate)
- Disadvantages: DNS caching increases update, Based on IP address of ISP dns
- Anycast routing server selection:
 - \circ $\;$ Packets will be routed to closest server based on BGP routing info
 - Advantage: no dependency on DNS or tcp
 - Disadvantages: complex implementation (requires multiple peers and consistent transit providers)

**Exterior vs Interior gateway routing

**BGP vs Interior gateway protocols

**Maybe add net neutrality